A Survey on Fairness in Parallel Job Scheduling

Magne Tenstad
Department of Computer Science
NTINU
Trondheim, Norway
tenstad.magne @ gmail.com

Job scheduling is a well-studied optimization problem with
a wide range of applications, in areas such as manufacturing,
transportation, healthcare and computing. In this survey we
consider high-performance computing (HPC) environments,
where computational tasks are distributed across multiple
processors or servers. Traditionally, schedulers have optimized
for performance-related metrics such as completion times and
utilization. However, these often do not reflect the expectations
of different jobs or users in the system. Hence, new metrics
based on fairness have been introduced. We aim to answer the
following research question:

RQ1 How has fairness been defined in parallel job scheduling?

First, we provide appropriate background on parallel job
scheduling, performance metrics and scheduling procedures.
Second, we list a number of different definitions of fairness.
We categorize, evaluate and compare the definitions. Fairness
in relation to performance is briefly discussed. Finally, we
conclude our findings.

I. BACKGROUND

We define the problem of parallel job scheduling, list some
traditional performance metrics and present two noteworthy
scheduling policies.

A. Parallel Job Scheduling

We consider the problem of parallel job scheduling as
defined by Klusdcek and Rudova [3]. The task is to schedule
n jobs on a set of m machines. Each job requires one (in
the case of a sequential program) or more machines (in the
case of a parallel program). Additionally, we assume each job
has a defined arrival time, processing time, and owner. We
assume the processing time is perfectly known on arrival, and
that jobs cannot be preempted. That is, once a job is started,
it cannot be terminated before the entire processing time has
elapsed. The reason to include job owners is to reason about
fairness between different users of the system.

A solution to the job scheduling problem is a schedule. A
schedule is a mapping from each job to a start time, and a
set of machines for the job to be executed on. Figure 1 shows
a schedule of five jobs on three machines. For a schedule to
be valid, the jobs cannot overlap in time on any machine.
The task of finding a valid schedule is simple in itself, but the
problem becomes difficult when we optimize the schedule with
respect to different metrics. Later we will introduce metrics

|

:

J |
m2 Ja !
|

|

|

|

|

ms Jo

Fig. 1: Five jobs scheduled on three machines in a FCFS
manner. j; requires two machines and j,4 requires three. The
processing times PT of jo and j3 is twice that of the rest.

of fairness, but first we consider some traditional metrics of
performance.

B. Performance Metrics

Some traditional performance metrics include makespan,
wait time, response time, slowdown and utilization. We denote
start time as ST and processing time as PT.

e Makespan (MS) is the total time required to complete all
scheduled jobs, measured from the start of the first job
to the end of the last.

e Wait Time (WT) is the duration a job spends waiting
before it begins execution.

e Response Time (RT) is the elapsed time between a job’s
submission and its completion, including both waiting
and processing times. That is, RT = WT + PT

o Slowdown (SD) is the ratio of the actual response time
of the job to the response time if executed without any
waiting. That is, SD = RT/PT.

o Utilization (U) is the ratio of active resources to the total
number of resources.

Makespan and utilization is calculated with respect to an
entire schedule. However, the values of wait time, response
time and slowdown are related to a specific job. Hence, when
considering a schedule, we take the average of these values
over all jobs in the schedule.

C. Scheduling Procedures

From the sets of jobs and machines, a schedule is deter-
mined by a scheduling procedure. Many scheduling procedures
are extensions of a few key concepts. As points of reference,
we briefly introduce First Come First Served and Shortest Job
First, along with some of their properties.

1) First Come First Served (FCFS): With FCFS, all jobs
are processed in the same order in which they arrive. This
ensures that no job is starved, i.e. continuously delayed by
other jobs. The downside is that FCFS has low utilization and
worse response times compared to other procedures [8]. To
mitigate this, some procedures fill the gaps of the schedule
with out-of-order jobs, a method known as backfilling. For
example, in Figure 1, js could be scheduled to msy or mg in
the gaps before j4. This would be an example of conservative
backfilling since it does not delay any scheduled jobs, as
opposed to aggressive backfilling where that is allowed. Later,
we will discuss the FCFS order as a metric of fairness.

2) Shortest Job First (SJF): With SJF, a job with shorter
processing time will always be chosen over another job with
longer processing time. This is an optimization of average
response time. However, it has the potential for process
starvation and the out-of-order processing is often considered
unfair.

II. DEFINITIONS OF FAIRNESS

To discuss any metric of fairness, we have to define a
set of identities for which to consider the fairness between.
As per convention in the field of fair allocation, we refer to
these identities as agents. In parallel job scheduling, we have
three possible identities to consider as agents: jobs, users, and
machines. Fairness is usually understood and represented as a
job-related metric [6] [10] [8] [9] [7]. However, recent years
have seen development in user-related fairness metrics [1] [3]
[11] [5]. For theoretical interest, we briefly describe machine-
related fairness and its connection to traditional performance
metrics. The following metrics of job fairness and user fairness
are presented in chronological order by publication date.

A. Job Fairness

Job fairness is the traditional approach to fairness in job
scheduling.

1) Job Priority Fairness (JPF): Scheduling of jobs accord-
ing to priorities has been done since at least as early as 1977
[6], and is still a common method [4]. One such criteria is
that no job delays another job of higher priority. This begs
the question of how to fairly assign priorities, but to our
knowledge that is not often considered.

2) Fair Slowdown (FSD): Motivated by the need of a
metric to compare conservative and aggressive backfilling
procedures, Srinivasan et al. propose fair slowdown [10]. First,
they present a strict definition of fairness: that no later arriving
job should start before any earlier arriving job. However, they
note that only an FCFS scheduling policy without backfilling
would be fair under this definition. Hence, the condition
is relaxed such that no job is started any later than when
it would start under FCFS-Conservative '. In other words,
although later arriving jobs may overtake queued jobs, it is
not considered unfair because they do not delay them. Let

'FCFS-Conservative is a FCFS-based procedure with conservative back-
filling. It is used in place of plain FCFS because it has better utilization,
improving start times, while still being considered fair.

FSTgcgs denote the fair start time under FCFS-Conservative.
Then, a job’s fair slowdown is given by

FSTgcps — WT + PT]
= PT . (1

Fair slowdown is calculated for each job of the schedule.
The total unfairness of the schedule is the percentage of jobs
that have a higher slowdown than their fair slowdown.

3) Fair Start Time (FST): Sabin et al. return to the notion
that no later arriving job should delay any earlier arriving
job [8]. However, they argue that the relative performance
of a “base scheme” (i.e. FCFS-Conservative, in the case of
FSD) confounds the evaluation. They propose a scheme that
is procedure-agnostic. To determine the fair start time for an
incoming job j, a simulation of all preceding enqueued jobs
is performed, using the same scheduling procedure that is to
be tested. The resulting start time of j in this simulation is
the fair start time. In other words, a job’s fair start time is the
start time if no job were to arrive after it.

Similar to the case of fair slowdown, a job is unfairly
scheduled if its start time is after its fair start time. These
delays are accumulated to consider the unfairness of an entire
schedule. Furthermore, each job’s machine usage is taken into
account. Let m; denote the number of machines required by
job <. Then, the Average Per Machine Miss Time is given by

FSD

Ziejobs max (ST; — FST;,0) - m;
Ziejobs my;

The differences between the works of Srinivasan et al. and
Sabin et al. is the choice of scheduling procedure to calculate
fair start times. In other aspects, like the definition of fair
slowdown and average miss time, they are complementary.

4) Resource Equality (RE): So far, we have only considered
fairness in the sense of job ordering, i.e. wait times. On
the other hand, resource equality considers fair allocation of
resources (i.e. machines) between jobs. The idea is to evenly
divide the resources among all jobs which are active in the
system [9]. By resource time, we refer to processing time
multiplied by the number of consumed machines, PT - m. Let
Macive (t) and jobs(t) denote all active machines and all active
jobs at timestep t, respectively. The deserved resource time
for job j is given by

departure ; -~ (t
dj:/ "y min | e g3
arrival Ziejobs(t) m;

If more jobs require resources, a particular job’s deserved
resource time decreases. The total unfairness of a schedule is
given by

APMMT =

2

> icjobs Max (d; — PT;m;, 0)

RE =
[jobs|

“4)

This is the average violation across all jobs. A violation
occurs if a job j is given less resource time than what it
deserves according to d;.

5) Net Benefit (NB): Nguburi and Vliet state that the
difference in actual and fair start times is not necessarily
the most relevant comparison. They propose a net benefit
approach, comparing the benefit of scheduling a job under
one procedure versus another [7]. They choose wait time as
the property for comparison, but note that other properties
may be used. Instead of considering how two procedures a
and b compare to an ideal fair scheduler, §, = tpi — tq
and 0, = tg — tp, they realize that a direct comparison is
independent of fg;:

8a — 0b = (trair — ta) — (trair — tp) =tp — ta &)

From this, they choose FCFS as a base schedule procedure
and look at how different schedulers compare to it: ¢; — tgcrs.
We would argue that the reference to an ideal fair scheduler
has been lost in this transformation, and that the end result
is simply a comparison to a baseline. Their main contribution
boils down to the consideration of the number of jobs that

benefit from one scheduler instead of another.

B. User Fairness

Every metric of job fairness can be transformed into a user
fairness metric by taking the average over all jobs for each
user. However, Klusacek and Rudovd argue that existing job-
related fairness metrics are not satisfactory with respect to
different users of a system [3].

1) Dominant Resource Fairness (DRF): Ghodsi et al. argue
that cloud computing and multi-core processors has increased
the need for allocation policies for environments with multiple
resources and heterogeneous user demands [1]. They propose
dominant resource fairness. It considers which type of the
user’s requested resources that make up the largest share
of the available resources of that type. For example, some
users require more CPU and other require more RAM. For
fairness, DRF applies max-min fairness across users’ domi-
nant shares. Let user A request (x CPU,4x GB) and user B
(3y CPU,y GB) from a total of 9 CPUs and 18 GB RAM.
The fair allocation is given by the solution to the following
optimization problem:

max x, Yy (Maximize allocations)
s.t. r+3y <9 (CPU constraint)
dr+y <18 (RAM constraint) (6)
4 3
1—: = Ey (Equalize dominant shares)

In this case, A gets (3 CPU, 12 GB) and B gets (6 CPU, 2
GB).

2) Normalized User Wait Time (NUWT): Klusacek and
Rudovd aim to keep good performance regarding classical
criteria such as slowdown or wait time, while maintaining the
fairness among different users of the system [3]. They propose
normalized user wait time. Recall that WT denotes wait time
and PT - m denotes resource time. The normalized user wait
time of user u is given by

Zj €jobs,, WT]

NUWT, = ———%——
Zjejobsu Pijj

)

This is the average wait time, normalized by resource time.
The normalization is used to prioritize less active users over
those who utilize the system resources very frequently [3]. The
closer the resulting NUWT,, values of all users are to each
other (i.e. the lower the variance), the higher is the fairness.

3) Expected End Time (EET): T6th and Klusacek state that
existing fairness criteria do not take into account the resource
demands of jobs (even though resource equality and dominant
resource fairness were already defined). They observe that user
expectations toward job wait times mainly correlate with the
complexity of the job requirements and the number of jobs
present in the batch. In order to follow these expectations,
they propose expected end time [11]. We will not provide the
complete algorithm for calculation of EET. To summarize, it is
based on the number of jobs, number of resources required per
job and the expected capacity of the system. It is calculated
once for each user, and the objective is to minimize the
percentage in which EET is exceeded.

4) Finish-Time Fairness (FTF): Mahajan et al. advocate
for the sharing incentive, which states that if n users? are
sharing a cluster, a user’s jobs should not run slower on the
shared cluster compared to a dedicated cluster with 1/n of
the resources [5]. Let Ty, denote the actual, shared finish-
time. Let T34 denote the finish-time of the user’s jobs in its
own independent and exclusive 1/n share of the cluster. Then,
finish-time fairness is given by

T
= — 8
P=r @®)

To evaluate the fairness of a schedule, the distribution
of p across users is analyzed. A tighter distribution (i.e.
low variance), and low maximum value of p indicate higher
fairness [5].

C. Machine Fairness

To the best of our knowledge, the term machine fairness has
not yet been used in the context of job scheduling. However,
we consider it a relevant third category, complementing job
fairness and user fairness. To some extent, machine fairness is
similar to traditional system performance metrics. For exam-
ple, fairness of machine completion times is an optimization
of makespan. Similarly, fairness of machine inactivity is an
optimization of utilization. In fact, this approach has been
utilized to connect the field of job scheduling to the field of
fair item allocation. In 2024, Huang and Segal-Halevi made
progress within analysis of a fair chore allocation algorithm by
reducing it to a well-known job scheduling algorithm [2]. They
proved the relevance of the connection between the fields,
which future work could expand upon.

Fairness Metric Agent Value Objective
Makespan Machine Finish Time Max-min
Utilization Machine Inactivity Max-min
Job Priority Fairness Job Wait Time By priority
Fair Slowdown Job Slowdown Min % violations
Fair Start Time Job Wait Time Min avg. violation
Resource Equality Job Resource Time Min avg. violation
Net Benefit Job Wait Time Max benefit
Dominant Resou. .. User Resource Share Max-min
Normalized User... User Wait Time Min variance
Expected End Time User Finish Time Min % violations
Finish-Time Fairness User Finish Time Min variance

TABLE I: Overview of fairness metrics.

III. COMPARISON AND EVALUATION

Table I provides an overview of the fairness metrics included
in this survey. Since makespan and utilization are known
performance metrics, they will not be discussed further. We
will also not argue that any fairness criteria is strictly better
than another, since this a question about the preferences of the
users of the system.

A noteworthy observation is that the first five (up to 2009)
consider fairness between jobs, while the most recent four
(from 2011 to 2020) consider fairness between users. This
suggests that the introduction of user-level metrics have been
successful, and that they continue to be developed.

Most metrics are calculated from wait time or finish time,
while some address the distribution of resources. RE calculates
a deserved resource time for each job. DRF provides a
fair share metric for heterogeneous resources. Similarly, the
availability of resources is accounted for in the calculation of
fair finish times for both EET and FTF.

In the case of FSD, FST, RE and EET, a threshold value
is provided. The total fairness is then based on violations
of this value, for example if a job starts after its fair start
time. FSD and EET aggregate violation counts, while FST and
RE aggregate by average violation size. The first approach is
particularly a risk to fairness, since one large violation is con-
sidered better than two small violations. For optimal fairness,
we would suggest a max-min approach, in which the maximal
violation is minimized. However, this can be computationally
intensive and may not be reasonable in practice.

A common concern when it comes to fairness metrics is
the potential downgrade in performance. That aspect has not
been devoted much attention to in this work. However, we
observe that many of the works that propose fairness metrics
also present complementary scheduling procedures. A shared
characteristic of these procedures is that they perform well
in terms of both fairness and traditional performance metrics.
We believe there are two reasons for this: 1) Any proposal
of underwhelming performance would be discarded due to the
prioritizations of the field. 2) All metrics we have described
are performance optimizations with regards to each job or each
user, and it is not too surprising that this is not at the expense
of global system performance.

2Mahajan et al. actually discuss apps as collections of multiple jobs, but
this corresponds to our definition of a user.

IV. CONCLUSION

Fairness in parallel job scheduling can be categorized into
job fairness, user fairness, and machine fairness, depending on
what identities fairness is considered between. For job fairness,
we have reviewed job priority fairness, fair slowdown, fair
start time, resource equality and net benefit. For user fairness,
we have reviewed dominant resource fairness, normalized user
wait time, expected end time and finish-time fairness. Machine
fairness is related to traditional performance metrics and may
be of theoretical interest due to its connection to fair item
allocation.

We have observed a shift from traditional job-related fair-
ness, to fairness metrics on a user-level. It has also become
common to include resource availability in the calculation of
fairness values. Some even consider heterogeneous resource
demands. The choice of a fairness metric depends on the
system in question, and the preferences of the system’s users.
Future work may dive deeper into the relation between fairness
and performance.

REFERENCES

[1] Ali Ghodsi et al. “Dominant resource fairness: fair
allocation of multiple resource types”. In: Proceedings
of the 8th USENIX Conference on Networked Systems
Design and Implementation. NSDI’11. Boston, MA:
USENIX Association, 2011, pp. 323-336.

[2] Xin Huang and Erel Segal-Halevi. A Reduction from
Chores Allocation to Job Scheduling. 2024. arXiv:
2302.04581 [cs.GT]. URL: https://arxiv.org/abs/
2302.04581.

[3] Dalibor Klusacek and Hana Rudova. “Performance and
Fairness for Users in Parallel Job Scheduling”. In:
Job Scheduling Strategies for Parallel Processing. Ed.
by Walfredo Cirne et al. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 235-252. ISBN: 978-3-
642-35867-8.

[4] Arkadiusz Madej et al. “Priority-based Fair Scheduling
in Edge Computing”. In: 2020 IEEE 4th International
Conference on Fog and Edge Computing (ICFEC).
2020, pp. 39-48. por: 10.1109/ICFEC50348.2020.
00012.

[5] Kshiteej Mahajan et al. “Themis: Fair and Efficient
GPU Cluster Scheduling”. In: 17th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 20). Santa Clara, CA: USENIX Association, Feb.
2020, pp. 289-304. 1SBN: 978-1-939133-13-7. URL:
https://www.usenix.org/conference/nsdi20/presentation/
mahajan.

[6] Bo Munch-Andersen and Torben U. Zahle. “Scheduling
according to job priority with prevention of deadlock
and permanent blocking”. In: Acta Informatica 8.2
(June 1, 1977), pp. 153-175. 1SSN: 1432-0525. por:
10.1007/BF00289247. URL: https://doi.org/10.1007/
BF00289247.

(71

(8]

(9]

[10]

[11]

John Ngubiri and Mario van Vliet. “A metric of fair-
ness for parallel job schedulers”. In: Concurrency and
Computation: Practice and Experience 21.12 (2009),
pp. 1525-1546. DOI: https://doi.org/10.1002/cpe.1384.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/
cpe.1384. URL: https://onlinelibrary.wiley.com/doi/abs/
10.1002/cpe.1384.

G. Sabin, G. Kochhar, and P. Sadayappan. “Job fairness
in non-preemptive job scheduling”. In: International
Conference on Parallel Processing, 2004. ICPP 2004.
2004, 186-194 vol.1. por: 10. 1109 /ICPP. 2004 .
1327920.

Gerald Sabin and P. Sadayappan. “Unfairness Met-
rics for Space-Sharing Parallel Job Schedulers”. In:
Job Scheduling Strategies for Parallel Processing. Ed.
by Dror Feitelson et al. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 238-256. ISBN: 978-3-
540-31617-6.

Srividya Srinivasan et al. “Selective Reservation Strate-
gies for Backfill Job Scheduling”. In: Job Scheduling
Strategies for Parallel Processing. Ed. by Dror G.
Feitelson, Larry Rudolph, and Uwe Schwiegelshohn.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2002,
pp. 55-71. 1SBN: 978-3-540-36180-0.

Simon Téth and Dalibor Klusgek. “User-Aware Met-
rics for Measuring Quality of Parallel Job Schedules”.
In: Job Scheduling Strategies for Parallel Processing.
Ed. by Walfredo Cirne and Narayan Desai. Cham:
Springer International Publishing, 2015, pp. 90-107.
ISBN: 978-3-319-15789-4.

