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1. The architecture of a DBMS 

A typical software architecture for a SQL DBMS is shown in the figure below: 

 

 
The SQL compiler takes SQL as input and returns tuples/records to the client. By using the SQL 

Catalog it can translate the SQL query to an algebra tree. The optimizer transforms the algebra tree 

to a more optimized algebra tree including a concrete access plan to the data using statistics about 

the data. The executor interprets the tree/plan and uses many modules in the system to execute the 

query and access data, logging transactions, locking data, etc. The database buffer keeps data in 

memory and will periodically write data to disk. The data is read/written as blocks, but the blocks 



contain data in the form of records being rows in specific tables. The data may also be indexes. The 

log is responsible for storing log records, which are used to let transactions be atomic and durable. 

Most of these concepts will be explained in the rest of the course of TDT4145. 

2. Database storage 

A database needs to be stored permanently, i.e., it resides on a disk, either a HDD (rotating disk) or a 

SSD. The database may be stored as a file in the file system in the operating system, or it may reside 

as «raw devices» on special partitions of the disk. The advantage of having special partitions is that 

the DBMS gets full control of the layout of the data. This is typically combined with the ability to have 

full control on when data is written to disk. Thus, the DBMS may have full control of what data 

resides in the buffer (main memory). The DBMS has more knowledge than the operating systems 

about which data should reside in the memory of the computer. The trend nowadays is to let the file 

system of the operating system do the file management, and to use operating system support for 

direct I/O and pinning data in main memory. 

There are multiple tasks related to file management: 

1. We need to know which data is related (belonging together) by having files. Thus, data needs 

to be linked together. 

2. The free space of the disk needs to be managed. The DBMS needs to allocate and deallocate 

data as the database is “living”.  

Further, in this text, we will not make any assumption about which solution is chosen, i.e., databases 

are stored in a device identified by a deviceId. We may think of a deviceId as a file name or as a 

native deviceId. 

 

3. Record format 

A traditional DBMS uses what is called a row store, in which every row of a table is stored as a record 

in the database. There are multiple possible record formats. The SQL catalog describes the format of 

the table. When the table has fixed length attributes, each attribute resides on a fixed offset within 

the record. Thus, to decode a record the DBMS knows where in the record each attribute resides. 

This is illustrated by the figure below: A record with 4 attributes. 

 
 

When you have variable length fields, e.g., VARCHAR, we need to store the record differently. Below 

we show the «record vector» format, where each field of the record may be of variable length. The 

record is almost self-describing by having pointers to each field. Often this is combined with a special 

field telling the number of attributes, the number of keys, etc. Type information may also be 

combined with each field pointer. However, this is usually described in the SQL catalog. 
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Another format to support variable length fields is to use delimiter characters to indicate the end of 

the field. The delimiter character is a special value used to show that a field is ending. This may also 

be supported by a special end of record character. 

 

4. Block format 

A block is a basic storage unit used by the DBMS to store data in a database. Every time the DBMS 

reads or writes data to/from the disk, it is in the unit of blocks. Very often the data is stored both on 

disk and in memory as blocks, such that it is easy to write or read data from the disk. However, 

higher level DBMS software typically sees data as collections of records, e.g., tables or results of 

queries. 

A block is usually identified by a BlockId, which may consist of a deviceId and an index into the 

device. A BlockId could be a 4 byte or a 8 byte field. With 4 bytes, one byte is used for the deviceId 

and 3 bytes to the index within the device. E.g., if each block is 16 KB, each device may store 224 

blocks of 16 KB, which makes altogether 256 GB. By using 8 bytes identifiers, you may e.g. use 1 byte 

for deviceId and 7 bytes for offset, creating the ability to span really large devices. 

We may think of a block as a collection of slots, where a record is identified by (BlockId, slot number). 

This is often named as a RID, Record Identifier. Thus, a RID is a semilogical identifier, which identifies 

the block on the device, but which is logical within the block, creating the possibility to move a record 

inside the block using an appropriate block format. Note that a record could be accessed by a key as 

well, e.g. in B+-trees, where the records are sorted according to the search key of the B+-tree. 

There are multiple possible block formats used in DBMSes. In its simplest form the fixed length 

records are simply aligned after each other, and the DBMS may calculate the positions by simple 

arithmetic using the RID and the record size found in the SQL catalog.  

If the records are of variable length, e.g., using VARCHAR attributes, we need a more advanced 

scheme. We may use delimiter characters of attributes and records. Delimiter characters are special 

values to show the end of an attribute and the end of a record. 

Another scheme used is to have a format as shown in the figure below. This allows for variable length 

records, for sorted records, easy delete and insert operations, etc. It is also possible to compact a 

block easily by «copying records downwards». This is done when a sufficient number of records has 

been deleted, and there are multiple “holes” between the records. Records (“tuples” in the figure) 

are aligned from the start of the block while the record pointer vector (“page directory” in the figure) 

is aligned from the end of the block. In addition to what is shown in the figure below, it is typical to 

support flip/flop, i.e., an atomic read/write stamp at the start and end of the block. These are 

numbers which should match when reading a complete block. Thus, the numbers are updated prior 

to write of the block. There are other header fields of the block as well, used for identification, 

recovery purposes, and possibly checksums. 



 
 

 

5. Database buffer 

Blocks are read from the disk into database buffers to be used the DBMS. The database buffer is 

usually a large buffer comprising big parts of the main memory of the computer. Blocks are accessed 

on disk using the BlockId, which identifies the device or the file, and the index into the device or the 

file. When a block is residing in the database buffer, it is also identified by the BlockId, and there 

exists a hash index to find the block in the buffer. Blocks belonging to the same hash value may be 

chained together. The nice thing about this organization is that blocks may be read and written 

directly into / from the database buffer without reformatting any data. 

The DBMS likes to use its own database buffer instead of the operating systems virtual memory. The 

reason for this is that it gets full control of which blocks reside in memory or not. The DBMS knows 

more about the semantics of the data and how it is going to be used. Thus, it may use prefetching of 

data when it sees that a scan of a table is happening, for example. 

Another task that a DBMS needs to do is to force blocks to disk as a part of transaction processing. 

This means that it needs to write data blocks which are changed as a part of the processing of user 

transactions. More often, it needs to force log blocks as a part of transaction processing. This is 

treated in the chapter about recovery in Elmasri & Navathe.  

6. Heap Files 

The most basic storage of tables is in heap files. The data in a heap is not ordered in any particular 

way. The records are simply stored in the order that they are inserted. A record in the file may be 

found by iterating through the records of the file. Thus, the operations on the file is to create and 

delete the file, to read, insert and delete records in the file, and to scan through the records of the 



file. When there are sufficiently many deletes to a heap file, a reorganization may take place. This will 

compact the blocks. 

There are multiple ways of implementing heap files. Usually, they use a linked list scheme where 

there are forward and backward pointers between the blocks. The pointers are BlockIds, i.e., logical 

pointers which may point to blocks in memory or at the disk. 

One way is to allocate blocks one at a time when necessary. Another way is to allocate multiple 

blocks at the time. The reason for this is that disks get more throughput when blocks of a file are 

allocated in sequence. Where to allocate blocks on disk is a separate theme. Operating systems (file 

systems) also have good support for smart allocation of blocks onto devices. 

Some implementations differ between full blocks and blocks having some free space. They will have 

two separate linked lists. Thus, it is easy to find blocks that have available space for new records. 

 

 
 

Heap files are mainly used to store tables when there is an index to the table, or it may be used to 

store records in temporary files during query processing. 

7. Static hashing 

Static hashing is hashed storage in its basic form. A file is composed of N blocks, which store the 

records. By applying a hash formula to the search key, the record is placed in a block of the file. The 

hash formula spreads the records evenly onto the blocks. To retrieve a record, the formula is applied 

to the key, and the appropriate block is found. A simple formula to use is h(K) = K mod N, where N is 

the number of blocks in the hash file. 

The essence to good hashing performance is to have a hash function which spreads records evenly. 

In case of skewed load on the hash file, the hashing is not performing very well. Anyway, it becomes 

a need to have overflow storage in one or another form: 

1. Open addressing: Store the record in the first successive block having free space. 

2. Separate overflow: Special blocks storing overflow records. The overflow blocks may be 

shared among many blocks, or may be separate for each block needing overflow storage 

3. Multiple hashing: Use another hash function to calculate the block to store the record. This 

may be considered as distributed overflow. 



 
 

The figure above shows a simple example of a hashed file with separate overflow. By hashing on the 

search key of the record, the block to store the record is found. When the block becomes full, an 

overflow block is used to store additional records. In case this becomes full as well, a second 

overflow block is chained into the list.  

The main problem with static hashing is that it is not dynamic. This is a big problem when the 

number of records is hard to estimate, and it is a dynamic nature of the data. Long overflow chains 

kill the performance of static hashing. 

 

8. Extendible hashing 

Extendible hashing is designed to allow for dynamic hash files, i.e., a hash file where the number of 

records is not known in advance. When using static hashing the number of records must be 

estimated at start and the length of the hash file must be decided. When a block in a static hash file 

becomes full, it is possible to double the length of the file and rehash all the records to fit the new 

file. However, this requires us to read and write every block of the file. Usually, overflow blocks are 

used to handle this situation. 

Extendible hashing uses a directory to point into the hash file. The directory points to the logical 

structure of the hash file, while the blocks in the hash file might be differently allocated. 

We describe the hash structure by showing an example. Assume a hash function h(K) = K MOD 16. 

Insert the following keys (K), where we have shown the key, the hash of the key in decimal and 

binary:  

K h(K) binary 

4068 4 0100 

1752 8 1000 

3429 5 0101 

2130 2 0010 

2854 6 0110 

1591 7 0111 



2203 11 1011 

1423 15 1111 

3017 9 1001 

2333 13 1101 

3923 3 0011 

4817 1 0001 

4876 12  1100 

We start by having a directory with 4 slots and 4 data blocks in the hash file. Each block has space for 

three keys. The key 4068 has hash value 4 (decimal) or 0100 (binary). The directory is indexed by the 

two last digits of the binary number. Thus, the key 4068 is hashed to block 0. After inserting the first 

10 records we get the following hash file: 

00

01

10

11

2 4068 1752

2

3429 3017 2333

2

2130 2854

2

1591 2203 1423

2

 

The number 2 attached to both the directory (global depth) and the data blocks (local depth) tells 

that we have used two bits in the hashing. We always start by having local depth==global depth. 

When inserting the 11th record (3923) we get a directory doubling. After inserting all 13 records we 

get this structure: 



4068 1752 4876

2

3017 4817

3

2130 2854

2

2203 3923

3

1591 1423

3

3429 2333

3

000

001

010

011

100

101

110

111

3

 

After the directory doubling we use three bits for the hashing when inserting new records and when 

splitting existing blocks. We do the splitting by using the bits from the right (less significant bits), 

meaning the three last bits.  

The insert of the key 3923 results in a block split. Thus, the keys in this block (11) are rehashed into 

two blocks (011 and 111). Thus, keys 1591 and 1423 are moved to 111 (7 in decimal), while the new 

key 3923 ends in 011 together with the existing key 2203. 

Similarly, for the insert of key 4817, it results in a split of block 01 to 001 and 101. Note that blocks 

that are not split retain their attached number, i.e. the local depth. The number attached to the 

directory is named global depth. 

When a block is full and we try to insert a new key and the local depth for the block equals the global 

depth, we get a directory doubling.  

Extendible hashing is regarded as a good solution to dynamic hash files. However, for lookups the 

directory result in two accesses to the hash file instead of one as in the normal case in static hashing. 

For many years the existence of a directory was considered as a problem, since it could become large 

compared to the size of main memory. Fortunately, hardware has evolved since that time. 

 

9. Indexing 

This chapter is intended as a definition of central indexing and storage concepts used within the 

course TDT4145 at NTNU.  



There are two reasons for doing indexing. 

1. Improve retrieval speed when accessing through the indexed field. 

2. Ensure uniqueness for the indexed field. 

The disadvantage for doing indexing is that you need to update the index when doing inserts or 

updates of the indexed records. 

Index field: Field/attribute of the record/row that is indexed. 

Primary index: An index structure which indexes the primary key of the records/rows.  

Clustered index: Index on table where the records are stored physically in the same order as the 

index records. In practice this is a B+-tree or hash index where the records of the table are stored 

within the index itself.  

Secondary index: An index which is not a primary index. 

 

Here we provide a list of typical storage and indexing alternatives when storing and indexing a table: 

 

Clustered B+-tree/clustered index. There is a B+-tree index on the primary key. The leaf level in the 

B+-tree stores the actual records/rows of the table. Thus, it is a clustered index. 

 

This alternative is used within MySQL's InnoDB storage engine. It is also the storage 

alternative used in Microsoft's SQL server when a primary key is defined for a table. There, it 

is called a clustered index or simply a clustered table. 

 



Heap file and B+-tree. The table is stored in a heap file. There is a B+-tree index on the primary key. 

There may be a hash index on some fields of the records. 

 

 

Heap file with a B+-tree index is used in MySQL's MyISAM storage engine. In MicroSoft’s SQL 

Server this is called a non-clustered index. The pointer from the index to the heap file is 

called a Record-pointer/RecordId or row locator in Microsoft SQL Server. 

 

• Heap file.  

 
In MicroSoft's SQL Server you get a heap file when no primary key is defined for a table. A 

heap file is useful when you never do a direct access for a key or search for specific records, 

except for things like scan, join or aggregation. 

 

• LSM trees (Log-Structured Merge trees). This is a modern access method which focuses on 

write speed over read performance. It keeps the latest written data in a main-memory 

storage area called MemStore. As new data is inserted, the current MemStore is copied into 

a disk-oriented structure SSTable. SSTables may be organized in multiple levels, where data is 

merged downwards in levels over time. This method is useful when you need good write 

speed and you mainly read the newest data. The LSM trees are regarded as having a superior 

write speed, due to low “write amplification” (how many disk writes an insert may cause) 

and due to better compression of data due to larger units, e.g. a SSTable may be 2 MB, while 

a B+-tree block may be e.g. 8 KB. LSM trees are used in Google’s BigTable, Adobe Hbase, and 

are present in SQL DBMSes, e.g. through Facebook’s MyRocks which is used as a storage 

engine in MySQL throughout Facebook. This is regarded as the data structure of “big data”. 

 

• Column stores. Traditional SQL databases use row-oriented storage, i.e., each row in the 

table is stored as a record. Data warehousing requires a lot of aggregation of single attributes 



and takes advantage of a column-oriented storage of tables. This gives less data to retrieve 

and makes it much easier to compress the data. Several SQL databases have built in column-

oriented storage in their servers. 

 

• Clustered hash index. Hash index on the primary key. Clustered index storing the actual 

records/rows of the table, i.e. a clustered hash index. It is called a hash cluster in Oracle. 

Hash index

 
 

 

• Recursive model indexes. New research within using AI to create indexes has shown 

promising results, using machine learning on the data to be inserted to create a N step 

model, using a linear model to create an initial prediction of a Cumulative Distribution 

Function (CDF) of a sorted index, and using one of several cubic model for step 2, and so on. 

Usually, two steps is enough. The problem with this approach is that works on static data, 

and is currently not in a state that is possible to use in a world with dynamic data, e.g., like 

big data arriving continuously at high speed 

 

10. B+-trees 

This document is intended as a short description of B+-trees to be used within the course TDT4145 at 

NTNU. Its intention is to replace the text book on B+-trees. 

B+-trees are the most widely used access structures within databases.  A B+-tree is a generalization 

of an ISAM structure where you have multiple levels. The advantages of B+-trees are that they are 

good for many situations, like sequential scans, range scans and they are good at direct access by 

search key as well. The main properties of B+-trees are that they organize the indexed keys in sorted 

order and that the tree is always balanced. Thus, they are good for inserts as well. The main 

disadvantage of B+-trees is that recent inserts tend to spread over the blocks of the tree, making 

large volumes of write load to the disk.  

Below we see an example of a B+-tree with two levels. At the leaf level (level 0) we see the actual 

keys which are indexed by the tree. At the level above (level 1) which in this example is the root level, 

we see keys which help us to navigate to the keys at the level below. E.g. the key 14 has one pointer 

on the left side. This leads to a block where the keys are less than 14. The pointer on the right side of 

14 directs the search to a block where the keys are 14 or greater. The next key at the root block is 27, 

meaning that the pointer in-between 14 and 27 directs to a block where the keys are 14 or greater, 

but less than 27. Note that pointers here are BlockIds, and they point to the block, not individual 

records within the block. We may think of the leftmost pointer in the root (or at any level>0) as a 

special record with key minus infinity. 



2 3 5 7  14 16 22 27 33

5 14 27

root

 

 

The keys at the leaf level of the tree may be records storing complete rows in a table (clustered 

index), or they may be indexed keys with a field pointing to a record in another (heap) file or tree. 

To illustrate some searches in this tree, we first search for key 3. We always start with the current 

root block. In this case 3 is less than the least key 5. We follow the link to the first block at the level 

below, the leaf level in this case.  To search within a block, a binary search is usually used since the 

keys are sorted. In this case we find the key as the second key within the block. Note that a binary 

search first makes sense when the number of records is larger than the “toy” example used in this 

case.  

The second example is searching for the key 15. We start with the root block and find the pointer in 

between 14 and 27. When searching the leaf level block here, we do not find the key 15. Such a 

search may be used to return the position for inserting a new record with key 15. 

The next example searches for all keys greater or equal to 14. First, we do a binary search at the root 

block, and find the pointer to the right of key 14. This will point to the block with keys 14 and larger. 

We scan the leaf level sideways starting with the block containing 14. This is one of the beauties with 

B+-trees, sideways traversals. Note that the pointers go in both directions, meaning that both 

forwards and backwards scans are possible. Thus, it is easy to evaluate queries including both “where 

attribute < 14” and “attribute > 14”. In addition, it is easy to deliver sorted keys when this is 

requested.  

Another strong point of B+-trees is that records may be inserted anywhere in the tree without any 

noticeable loss in efficiency. If there is space in a block when inserting a record, the record is simply 

inserted in that block. If it is not enough space, the existing records are divided in-between the 

existing block and a newly created block. This is called block split. Normally, half of the records are 

moved to the right in the newly created block in the split.   

Insertions into B+-trees 

We will show a "toy" example of insertions of keys into an empty B+-tree. An ordinary B+-tree would 

have many records/keys per block, e.g. 20 to 200. However, in our "toy" tree we have just a few. The 

following keys are to be inserted in the given order: 2, 5, 14, 22, 27, 33, 3, 7, 16 and 24. We assume 

blocks with space for 3 keys, and with 4 pointers in the blocks above level 0. 

After inserting the first three keys we get the following "tree": 

2 5 14

root

 



The root is pointing to a single level 0 block. We try to insert key 22, but there is no space for this. 

Thus, we need to split the leaf level block. After splitting this block, we get the following tree: 

2 5 14   

14

root

 

At a block split we move half of the keys to the new (right) block, before we insert the new key. In 

this example it means that just one record is moved to the block to the right here (key 14). We 

always do the block split before inserting the new key. A new root block is allocated as well. In this 

root block we insert the split key, i.e. the leftmost key in the newly allocated block.  

After inserting the two keys: 22 and 27, we get the following tree: 

2 5 14 22 27

14

root

 

Now, the root points to a block at level 1. After inserting another two keys we get the following tree: 

2 3 5 14 22  27 33  

14 27  

root

 

We got another block split at the leaf level. After inserting another two keys, we get the following 

tree: 



2 3 5 7  14 16 22 27 33

5 14 27

root

 

We got yet another block split at the leaf level. Note that when splitting a block at the leaf level, we 

"copy" the split key to the level above. After inserting the last keys, we get a block split at level 1: 

2 3 5 7  14 16 22 24 27 33

5 22 27

14

root

 

Now, something interesting has happened. When splitting a block at a level above level 0, we "move" 

the split key to the level above. In this case it means that key 14 from level 1 has been "moved" to 

level 2. The reason for this is that level 1, 2 and above are merely providing directions to level 0, 

where the "real" indexed keys exist. Thus, we cannot move away a real indexed key from level 0 

since it is a part of the user data in the database. 

We do not show deletions in B+-trees. Usually, this is done by compacting levels in the tree by a 

management thread and then deleting the empty blocks. However, some research papers have 

shown that delete-at-empty-block suffices, meaning that you do not need a separate management 

thread doing this, simply deleting a block when it becomes empty is enough.  

Composite keys 

When we have composite keys, i.e., search keys consisting of several attributes, the sorting in the B+-

tree is according to lexicographic order. This means that the keys are first sorted on the first attribute 

of the key, and secondly on the second attribute, and so on. This means that it can be advantageous 

to make the order of the key attributes according to selectivity. The first attribute should be the key 

giving most selective distribution. An example could be the Employee table with attributes: 

 

Employee (ssn, dno, age, street, zip, salary, skill) 

An example query could be: 

SELECT * FROM Employee WHERE dno=4 and age>50; 



In this case when using composite search key (dno,age), we will first search for dno=4, and 

afterwards scan the Employees to find the ones with age>50. An alternative is to use (age,dno) as 

search key. In this case we have to start the search at the first row having age=51 (if any), and then 

scan the B+-tree for all employees with dno=4. To know which is most selective, one needs statistics 

of the table. A guess here would be that department is most selective, depending on the number of 

departments existing. 

Summary of B+-trees 

Some summarized concepts about B+-trees: 

• The indexed records are stored at the leaf level (level=0). The blocks above the leaf level are 

merely used to navigate to the leaf level. 

• The records/keys at one level are sorted. 

• The block should at least be 50% filled. On average a block will be 2/3 or 67% filled when 

inserting keys randomly. Some books operate with 69% fill degree (ln(2) = 0.69) 

• The blocks have a size that fits the disk, typically, 4KB, 8KB, 16KB or 32KB. 

• Blocks are disk-oriented and are traditionally read into memory in disk format. However, it is 

also possible to convert the disk format to e.g. Java objects when reading in a block, and 

opposite when writing the block.  

• Search is performed from the root to the leaf level. 

• In comparison to LSM trees, B+-trees are regarded to have superior read performance, but 

LSM trees have superior write performance. 

 

11.  Queries and storage structures 

This document is intended to complement the text book from Elmasri & Navathe on how simple 

queries are executed using the indexing and storage concepts presented previously in this document. 

The intention is to complement Chapter 18 of the text book. 

We will use the following storage alternatives for a table. 

1. Heap file 

2. Clustered B+-tree 

3. Heap file and unclustered B+-tree. 

4. Clustered hash index  

Example 

To explain the concepts, we will use an example. Assume a table of employees: 

Employee (empno, name, age, depno, salary).  

 

We assume there to be 100 000 employees in the table.  

1. Heap file: 

Each block in the heap file may contain 100 employees, so that a heap file will contain 1000 blocks. 

Note that this is an example and the heap file is a useful starting point.  



2. Clustered B+-tree 

When inserting the same records into a clustered B+-tree there will be 67 % filldegree, meaning 67 

records will fit in each block in average (when using random inserts). The leaf level (level=0) of the 

B+-tree will then contain 1500 blocks. How many levels will there be in the B+-tree? Usually, a B+-

tree has 3 or 4 levels. In this case an index record in the B+-tree will be on the format (empno, 

BlockId). If we assume such a record to need 20% of the storage space of an Employee record, level 1 

of the clustered B+-tree will contain 1500 records because there is one record pointing to each block 

at the leaf level. Each block may contain 67 * 5 = 335 records, because the size of each record is 20 % 

of the Employee records.  Thus, there will be 5 blocks on level 1 because 5 * 335 = 1675, being more 

than 1500. There will be 1 block on level 2 since this level contains just 5 records. The clustered B+-

tree has 3 levels. 

3. Heap file and unclustered B+-tree 

The heap file will be the same as in the original with 1000 blocks. How big will the unclustered B+-

tree be? In this case the records at the leaf level will be on the format (empno, RecordId). The 

RecordId may be assumed to be (BlockId, index within block). E.g. 4 + 4 bytes. If we say (empno, 

RecordId) needs 25% of the space of an employee record, the leaf level will contain 25% * 1500 

blocks = 375 blocks.   Level 1 will contain 375 records (empno, BlockId). This will probably be 

contained within 1 block. There will be space for 335 records in average per block, as calculated in 

the clustered B+-tree example. But, the split usually appears when the block is full. That is when 335 

+ 50% = 503 records are inserted. Thus, this B+-tree will have 2 levels. 

  

4. Clustered hash file 

A hash file typically has 80 % fill degree. Thus, a clustered hash file of the example table will contain 

1000/0.8 = 1250 blocks. 

 

 

Simple SELECT queries 

There are multiple types of queries. We consider some simple ones. 

 

SELECT * FROM table; 

This is to select all records from the table.  

1. (heap file) We need to scan all 1000 blocks. 

2. We may scan the leaf level of the B+-tree, but we also need to traverse down to the leaf 

level. Thus, 2 + 1500 blocks. 

3. Here, we may scan the heap file. 1000 blocks. 

4. We need to read the whole hash file, 1250 blocks. 

 



SELECT attributes FROM table WHERE key=constant; 

We assume the key to be the indexed attribute. 

1. In average, we need to scan half of the heap file. Thus, 500 blocks. We assume they key 

to be unique here. 

2. We need to traverse down the B+-tree. Thus, 3 blocks. 

3. We need to traverse down the B+-tree plus accessing the heap file using a RecordId. 

Thus, 2 + 1 blocks. 

4. In a hash file the average blocks to be accessed is 1.2. This is due to some overflow 

blocks. 

 

SELECT attribute FROM table WHERE key > constant; 

1. The heap file needs to be scanned entirely. Thus, 1000 blocks. 

2. Here, we need to traverse down the B+-tree, and scan forwards at the leaf level. If we 

assume that 20 % of the keys match, we traverse 2 blocks down and 0.2*1500 sideways. 

302 blocks. 

3. If we choose to use the B+-tree index, we need to traverse 1 block downwards and 

0.2*375 = 75 blocks sideways. In addition, we need to follow all 0.2*100 000 = 20 000 

pointers (RecordIds) to the data records in the heap file. Thus, 20 000 + 1 + 75 = 20 076 

blocks. Then, it is better to scan the heap file, 1000 blocks. 

4. We need to scan the hash file. 1250 blocks. 

 

 

12. JOIN queries 

We will treat nested loop join. For join queries indexes are of no help, unless they are indexing the 

join key.  

If we add another table to our example  

Department(dno,dname,manager,location) 

we could consider a query like: 

 

SELECT name, salary, location FROM Employee, Department WHERE 

Employee.depno=Department.dno AND dname=’Sales’; 

To illustrate this, we assume there to be 500 departments stored in 5 blocks in a heap file. We 

assume there to be 5 blocks in the buffer. Thus, in a nested loop implementation, we may use 3 

buffer spaces for one table, 1 for the other table and 1 for holding a result block. 

Heap files. 

In a plain nested loop, we could read 3 blocks into the buffer from Department and then read 1000 

blocks (one and one) from Employee. Then we read the last 2 blocks from Department and then scan 



the 1000 blocks of Employee again. In total we get 5 (Department) + 2*1000 (Employee) = 2005 

blocks read. We do not say anything about the result, because we do not know the size of the result 

(i.e. how many Employees that work in the Sales department). If we switch the order of the tables, by 

reading the employee table into the 3 buffer slots, we get 1000 + (1000/3)*5 blocks. Thus, 1000 + 

334*5 = 2670 blocks. It is considered as a general rule to have the smallest table in the outer loop of 

the nesting.  

If we consider the query in detail, we note that there probably will be few departments which are 

used in the join, possibly just one (dname=’Sales’). Thus, we may read this record from department 

first. This takes either 1, 2 or 5 blocks depending on the organization. This record / these records will 

certainly be contained within one block in buffer. Thus, we only need to scan the 1000 blocks in the 

Employee table. In total, e.g. 1001 blocks are read.   

 

13.  Transaction isolation levels and SQL 

There has been a development in isolation levels and concurrency control in SQL databases. There is 

little agreement on the concepts and names used in these systems. Thus, we will try to describe the 

different concurrency mechanisms that are used in today’s SQL databases. 

ACID is typical way of describing the concepts of transactions. The I of ACID is Isolation, which means 

that concurrently executing transactions are isolated from each other. The toughest isolation level 

used is serializable (name used in SQL standard), meaning that each transaction can pretend that it is 

the only transaction running on the entire database. The database ensures that when the 

transactions have committed, the result is the same as if they had run serially, thus, they have run 

after each other. 

The weakest usable level is READ COMMITTED. It has two properties: 

1. When reading from the database, you will only see data that has been committed (no dirty 

reads). 

2. When writing to the database, you will only overwrite data that has been committed (no 

dirty writes). 

READ COMMITED is used as default in many databases, like Oracle, MS SQL Server and PostgresSQL. 

There are two ways used to support this. 

1. Locking. The transaction sets write locks before writing a data item. Release of this lock is 

done at commit of the transaction. Before reading an item, the transaction sets a read lock 

on the item, but this read lock is released after the read is done. 

2. Snapshot isolation. Most databases prevent dirty reads by keeping old values for writes until 

the transactions commit. Read transactions may read the old value. Only when the new 

value is committed do transactions switch over to reading the new value. To keep single 

record locks would cost too much, since one writer may cause multiple readers to wait. This 

is also called multi-version concurrency control. 

REPEATABLE READ is the next level of isolation. This is used to solve the problems of re-reading some 

items, such that they have not changed since the transaction read them previously. This isolation 

level is usually supported by the same mechanism as previously, i.e., snapshot isolation. Some 



databases calls this level SERIALIZABLE, other calls it REPEATABLE READ, and some use REPEATABLE 

READ to reference SERIALIZABLE. Thus, there is real confusion on these concepts. 

SERIALIZABLE means that transactions operate as they are running serially. However, they may run in 

parallel as long as their effect is like run serially. It is usually supported by using two phase locking 

(2PL). SERIALIZABLE isolation is usually regarded as the strongest isolation level. It guarantees that 

even though transactions may execute in parallel, the end result is the same as if they had executed 

one at a time, serially, without any concurrency. 

 

 


