
antonink@idi.ntnu.no

Su�x trees

TDT4187 – Exercise 3 October 11, 2017

Su�x Tree Construction & Features

1) Create the su�x tree for the string ! = GCACGCA using Ukkonen’s
algorithm. Note down the implicit su�x tree after execution of each phase.

(a) Create keyword tree for the same string, and pinpoint the di↵erences.
Explain why su�x tree is more e�cient both in time and space than
a keyword tree.

(b) Consider case where the su�x tree was created using high-level Ukko-
nen algorithm (slide 4/26; all extensions explicit). Which extension
rules were used for each su�x? Pinpoint steps where the e�cient ver-
sion of Ukkonen algorithm performs explicit extension (as opposed to
implicit).

(c) In which steps of the e�cient Ukkonen algorithm is the implicit su�x
tree also a genuine su�x tree?

2) Consider the following set of strings {Si = aibiai�1bi�1}i2N. Consider the
su�x tree for arbitrary word from this set. Determine (asymptotically)
the total length of edge labels in the su�x tree (w.r.t. the length of the
word). That is, how many letters would be necessary to write down all the
edge labels explicitly? If your result is in !(n), what does it tell about the
e�cient Ukkonen algorithm?

hint: The di�culty lies in some branches of the tree being shared by a
number of su�xes of the word. Try to focus on branches where you know
the number of su�xes sharing them.

1

Algorithms

3) You are given string !1 and string !2, both of size n, over fixed-size alpha-
bet ⌃. For O(n) preprocessing time, you then want to be able to answer
in O(|P |) time for any given pattern P over the same alphabet, whether
P 2 D, where D is set of substrings of !1 not contained in !2. Design an
algorithm that acheives this.

4) Consider the All pairs prefix-suffix matching problem (slide 22 -
Su�x tree applications). Design an algorithm for this problem which
doesn’t use Su�x trees. The algorithm shall have a complexity at most
O(k ·m), where k is the number of patterns and m is the total length of
the patterns.

hint: Linear time pattern search algorithm, such as KMP algorithm, could
be useful.

Some more algorithms

5) A string p = p1...pn is a palindrome if it spells the same string when read
backward; that is, pi = pn+1�i. Design an e�cient algorithm for finding all
palindromes (of all lengths) in a text.

hint 1: Lowest Common Ancestor (LCA) retrieval for su�x trees can be
queried for two vertices v1, v2 at constant (O(1)) time, at the cost of O(n)
preprocessing on the su�x tree.

hint 2: Longest Common Extension of two su�xes Si, Sj can be queried
in O(1), using the LCA preprocessing.

Jones & Pevzer: p. 337, Problem 9.7

6) Design an e�cient algorithm for finding the longest exact repeat within a
text.

Jones & Pevzer: p. 337, Problem 9.8

7) Design an e�cient algorithm for finding the longest exact tandem repeat
within a text.

Jones & Pevzer: p. 337, Problem 9.9

2

*

*

